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 Since the actual solution to intertemporal rational expectations models is usually not known,
 it is useful to have criteria for judging the accuracy of a given numerical solution. In this paper
 we propose a test for accuracy that is easy to implement and can be applied to a wide class of
 models without knowledge of the exact solution. We discuss the power of the test by simulating
 several models with the linear-quadratic approximation and with the method of parameterized
 expectations. We conclude that the test is powerful.

 1. INTRODUCTION

 Because of the difficulty in finding analytic solutions to stochastic dynamic models with
 rational expectations, it is becoming more and more common to resort to numerical

 methods for solving these models. Recent applications to economics are reviewed in Marcet
 (1993). Different simulation methods are based on different types of approximation and,
 therefore, they are subject to approximation error.

 Some procedures can, in principle, approximate the solution arbitrarily well. These
 include procedures that (i) convert continuous variables into discrete ones by use of a

 grid, for example, the procedures used by Miller (1984), Rust (1987), Tauchen (1986),

 and Wolpin (1984), and (ii) methods that approximate some unknown function with
 flexible functional forms of finite elements (for example polynomials or linear interpola-
 tion), such as in the methods discussed in Coleman (1991), Marcet (1988) and Judd (1989).
 Methods of type (i) can get an arbitrarily accurate solution by refining the grid, and
 methods of type (ii) can get an accurate solution as the number of elements in the function
 (e.g., the degree of the polynomial) goes to infinity. Nevertheless, computing costs often
 hold the approximation to a level that has no guarantee of being the 'correct' one.

 The issue of accuracy is even more important in methods where the solution cannot

 be refined. For example, the backwards solution procedure of Sims (1989), Ingram (1990)
 and Novales (1991); the extended path method of Fair and Taylor (1983) and the linear-
 quadratic approximation used, for example, by Kydland and Prescott (1982) and
 Christiano (1990).

 In this paper we propose a test for the accuracy of a numerical solution to a rational

 expectations model. Our test is very easy to implement, it is computationally inexpensive,
 it can be performed without knowledge of the true solution and it can be used by most

 solution procedures. We will discuss the principle underlying the test, as well as several
 ways of implementing it. Versions of the test-statistic proposed in this paper are used in
 Taylor and Uhlig (1990) to compare solutions to the simple growth model with alternative
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 4 REVIEW OF ECONOMIC STUDIES

 methods: their comparisons suggest that those methods that passed the test also gave

 similar solutions.

 The test presented here is powerful enough to discover inaccuracies in several models.

 In fact, we will present cases where some important characteristics of the solution are

 fairly accurate, but the accuracy test still rejects the solution. In the case where the solution
 is rejected, the accuracy test can be used to determine which part of the solution is

 inaccurate. For example, in Section 4.3 we discuss an example where the real part of the

 model is accurate, but the monetary part is not.

 Our test can be used as guidance for applying a given algorithm, when we have to

 select functional forms, size of the grid, convergence criterion, etc. For example, it can

 tell us if we should use a higher-degree polynomial. Or, as another example, it can help
 in choosing between a linear-quadratic (LQ) and a log-linear-quadratic approximation

 (log LQ) as in Christiano (1990). Furthermore, when used in conjunction with the param-

 eterized expectations algorithm, the test indicates if some elements of a higher-order poly-
 nomial do not have to be introduced, thereby reducing the cost of using high-order

 polynomials.
 The papers by Tauchen (1991), Danthine, Donaldson and Mehra (1991) and

 Christiano (1990) evaluate the accuracy of a particular algorithm in solving a particular
 model by comparing an approximate solution with an 'exact' solution found by either

 analytic methods or by using a very fine grid. This way of checking for accuracy is only
 indicative, since the conclusion is model-dependent. More importantly, in general we do

 not have analytical solutions and we cannot spend huge amounts of computing time only

 to check for accuracy, so that we cannot compare our solutions to an 'exact' one. Our

 test can be applied without any knowledge of the exact solution.
 In Section 2 we present the idea behind the test and discuss how it can be implemented.

 In Section 3 we illustrate the properties of the accuracy test with a simple example; we

 will see that the results of the accuracy tests improve as the solution procedure becomes

 more precise. In Section 4 it is shown, that the results of the accuracy tests indicate that
 the log LQ approximation is more accurate than the LQ solution, which is the same result
 obtained by Christiano (1990) with a more expensive procedure for testing accuracy. We
 also give an economic justification of the better performance of log LQ in that model by
 arguing that the restrictions imposed by the log LQ approximation make more economic
 sense. In order to see how the test would help in comparing solutions that can obtain
 arbitrary accuracy with solutions that cannot, we also compare the solutions obtained by
 the parameterized expectations approach' versus LQ and log LQ.

 2. A TEST FOR ACCURACY

 Consider an economic model where a set of variables z, completely describes the economy
 at time t. Some of the elements in z, can be exogenous. In stochastic dynamic models with
 rational expectations, it is often the case that the solution is stationary and ergodic, and
 that a system of equations of the following type has to be satisfied:

 f(z,) = E(O (z, , I, Zt+2, * * .) 1Qt), (2.1)

 1. This approach has been applied among others, by Marshall (1988), den Haan (1990a, b), Marcet and
 Singleton (1989) and Marcet and Marimon (1992).
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 DEN HAAN & MARCET ACCURACY IN SIMULATIONS 5

 where, given the parameters of the model, f: Rn- .Rm and q: R' x R'-.Rm are known
 functions, and where E(x I y) represents the conditional expectation of x given y. The
 information set Q, contains a subset of current and past values of z,. Notice that we
 can accommodate models with sub-optimal equilibria, private information and inequality
 constraints. For many stochastic dynamic models one can guarantee that if certain side
 conditions are satisfied (such as transversality conditions or time-invariant solutions),
 then, (2.1) determines the solution uniquely.

 If the above equation is satisfied, then the residual

 Ut + (Zt+ I, Zt+2, . *)-f(zt) (2.2)

 satisfies

 E[ut+ 1 ?h(xt)] = 0, (2.3)

 for any k-dimensional vector xt that belongs to the information set Q,, and any function
 h: R Rq. The idea for the test is to see if equation (2.3) is close to being satisfied for the
 simulated series {z,} obtained with a certain numerical algorithm. (Throughout the paper
 we use the bar to denote simulated series.)

 In general this is a challenging test, because most solution procedures do not enforce
 (2.3).2 It is also a meaningful test because, if we could check (2.3) for any function h(.),
 if (2.1) contained all the equations that determine the solution of the model, and x, is a
 vector of sufficient state variables, in effect we would have shown that our solution is
 exact, since the conditional expectation is the only function having this property. When
 equations (2.1) come from the maximization problem of the agents, testing (2.3) can be
 interpreted as testing if the derivative of the solution is zero along the directions given by
 the function h(.).3

 The accuracy test consists of obtaining long simulations of the process and calculating

 B,- ET fit+ I ?9hG(i ) BT= T

 where fit and h(x,) are calculated with the simulated z,, and checking if BT is close to zero.
 Clearly, if the solution were exact BT converges to zero almost surely as T goes to infinity.

 Obviously, BT will never be exactly equal to zero because of sampling error. The
 question that arises is how to decide whether BT is significantly different from zero. We
 have to be careful because BT could be made arbitrarily small by, for example, taking a
 function h( ) with sufficiently small function values. One way of avoiding this problem is
 to use the distribution of some test-statistic related to BT under the null hypothesis that
 the solution is accurate. To be precise, we use TB'TA-'BT as our test-statistic, where AT
 is some consistent estimate of the matrix

 SRI = __ E[[u,+ 1 ?h(x,)] [u,+ 1 _1?h(xt,j)I'I.

 2. This is not true of the backwards solution procedure, that constructs u, in a way that guarantees (2.3)
 to hold for any h(). To do a similar test for that procedure one would have to test if the innovations to the
 exogenous shocks that the backwards solution recovers are orthogonal to lagged variables.

 3. It is of course impossible to check whether (2.3) is satisfied for any function h(o); at the end of this
 section, however, we discuss a procedure with which it is possible to avoid the problem of checking (2.3) in a
 predetermined dimension.
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 6 REVIEW OF ECONOMIC STUDIES

 There are many choices for AT. The simplest case is when q (z,+I, Zt+2,. . .) depends
 only on zt+ I and m = 1; then we can use

 A=ET u2t+ lh(.xt)h(.xt)'
 AT= T

 Consistent estimators of Sw, in more general cases are described in the GMM literature;
 see, for example, Hansen (1982), Newey and West (1987) and Christiano and den Haan
 (1993).4

 The test-statistic satisfies:

 Proposition 1. If {zt} is stationary and ergodic, the numerical solution is exact, S", is
 finite and invertible, then

 D

 TB'TA-'BT X2m as T-.oo.

 Proof. The process {ut+i0h(xt)} is a function of a stationary and ergodic process,
 so it is itself stationary and ergodic. We have that E(ut -sh(xt) I zt zt- I.. .) =0 and
 SW < ooI, so that all the conditions of Theorem 5.15 in White (1984) are satisfied, and

 D

 T1/2BT=(l1/T)-/2ETut_ i?h(xt) - N(O, Sw) as T-+oo.

 Given a positive semi-definite matrix M, we let M - 1/2 be some uniquely determined
 decomposition satisfying M-12 M-12 = M-1. Since Sw is invertible, the mappingf defined
 by f(M) = M-12 is continuous at Sw and AT-1/2 converges in probability to S-1/2, so
 that T1/2AT'1/2BT _D N(O, I). Since A-'1/2BT is a qm-dimensional vector, the proposition
 folllows. I I

 The above proposition mimics the test of over-identifying restrictions of Hansen
 (1982). The proof is very similar and is offered only for completeness. One important
 difference is that, in our case, the parameters that generate the observations are known
 with certainty so that there is no loss of degrees of freedom in the x2 distribution due to
 the number of estimated parameters.

 This result suggests the following:

 Accuracy test. Obtain a large number of observations by simulating the model for
 a realization of the exogenous process. If the value of TBTA-'BT belongs to the lower or
 upper critical region of a X2m distribution, there is evidence against the accuracy of the
 solution.

 Note that this test can be implemented without any knowledge of the analytic form of
 the true solution, so it has wide applicability. Also note that, for most solution procedures,
 simulating the model for a realization of the exogenous process is computationally inex-
 pensive and so is calculating TBTA+'BT. As with any other test-statistic it is possible that
 an accurate solution is rejected (Type I error) or an inaccurate solution is not rejected
 (Type II error). But, since the test can be performed at such low costs, Type I error can

 4. Some of these estimates are designed especially to guarantee positive-semidefiniteness of the estimator.
 Since we are using many observations and the true model, it is less likely that the estimator will be non-positive
 semidefinite even if the estimator is not so by construction.
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 DEN HAAN & MARCET ACCURACY IN SIMULATIONS 7

 be eliminated by repeating it for different realizations of the exogenous process and report-
 ing the percentage in the upper and lower critical 5% of a X m distribution. This to convince
 the reader that not rejecting the null-hypothesis is not due to a lucky draw. For the
 solutions that we tested we repeated the accuracy test 250 and 500 times and we found
 very similar answers for both number of repetitions.

 To implement the test the researcher has to choose the number of observations (T)

 and the function h(.); these choices will be discussed next. We know that any given
 numerical solution will fail the accuracy test for sufficiently large T. The reason is that,

 since any numerical solution is only an approximation, (2.3) is never exactly satisfied by
 the simulated series, and the test-statistic will discover this if enough observations are

 used. Therefore, the choice of T governs the stringency of the test: the higher T the harder
 it is for a given solution to be deemed accurate. One possible criticism to this test is that

 it makes no sense to ask-whether BT is close to zero, since we know that this will not be
 true for T high enough, but this could be said of most accuracy criteria used traditionally
 in numerical computations. For example, assume we have a function F(x) and we find its

 fixed point x = F(x) numerically. The usual way of checking if this fixed point is correct
 is by looking at the number of digits that F(x) and x have in common, even though for

 a given x found numerically, there is always a criterion stringent enough (a high enough
 number of digits) that will deem x inaccurate.

 Therefore, in our case, T can be interpreted as a measure of how stringent the

 criterion is: if the solution passes the test even for a very large T, this is evidence that the
 solution is very accurate. The user of the accuracy test has to be careful to report the T
 that he used, just as a researcher calculating a fixed point numerically should report the
 number of digits of accuracy. In the next section we show that at least for the growth
 model it is possible to come up with a solution that is so accurate that the test passes even
 in enormous samples. If one wants to compare the data generated with a numerical solution
 with an actual series, then we suggest choosing T substantially bigger than the length of
 the empirical series; in this way, one can ensure that the numerical error is small compared
 with the inevitable sampling error contained in real data. In the following sections we
 used 3000 observations, which is around 20 times as big as a typical post-war series of
 quarterly data.

 It is clear that h(.) can be chosen in an infinite number of ways. In the examples we
 tried we found little sensitivity to this choice, but this may be problem-specific. In principle
 we would want to choose h(.) in such a way as to maximize the power of the test statistic.
 An idea from Lee, White and Granger (1989) can be used to increase the power of the
 test statistic; these authors develop a test for neglected nonlinearity in time-series models
 by choosing the dimension in which to test the null hypothesis randomly. A simple example

 is the following: suppose that xt contains one element, e.g. the capital stock kt; letting ;
 be a random variable, we can choose h(xt) = k; (here, ; is a power). In the next few
 sections we show that the test is already very powerful even in identifying small inaccurac-
 ies, so we do not pursue this idea of randomizing h( ) in the present paper.

 Since the test is so powerful it is possible that a numerical solution fails the accuracy
 test, even though some important characteristics of the solution, like second moments,
 are accurately simulated.

 2.1. Applying the test to the parameterized expectations method (PEA)

 The method of parameterized expectations, described in Marcet (1988) and den Haan and
 Marcet (1990), substitutes the conditional expectation in the right-hand side of (2.1) by
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 8 REVIEW OF ECONOMIC STUDIES

 a particular function yv(f3f, s,), where st represents the state variables in the model. Here
 yV, f3f and s, are chosen so that the function yl(Ilf, -) is close to the conditional expectation
 in (2.1). Among other things, this means that f3f solves the following minimization
 problem:

 min ( 1 /T*)ZT* [4 (it+ 1) - 'v(fl g )]2 (2.4)

 where zt and &t are simulated by substituting the conditional expectation in (2.1) with the
 parameterized expectation yl(13f, &t). From the first-order conditions of (2.4) we have that

 1 T* - OiV(Pfl f.) _
 -Z ut+1 0'' -0 (2.5)

 by construction. Hence, for the particular choice h @V(If, )/8p, for the particular reali-
 zation used in finding fif, and for the particular sample size T* (which need not be equal
 to T), the parameterized expectations solution makes BT exactly equal to zero. The accur-
 acy test would always be in the lower tail (but never in the upper tail), and it would always
 reject the solution obtained with this method.

 Therefore, in order to use the accuracy tests on solutions obtained with this method,

 we have to choose a function h that is different from @Oy/@/3; also, in calculating the test
 statistics one should use a realization of the stochastic exogenous shocks that is different

 from the one used in calculating f3f.
 Finally, the accuracy test can be used for guidance as to what type of function v/

 should be used in PE. In this solution procedure, as in all finite element procedures,
 arbitrary accuracy can be obtained, in principle, by increasing the degree of the
 polynomial.5 In practice, however, increasing the degree of the polynomial is costly, since
 higher degree polynomials entail more terms and the number of coefficients involved
 increases quite fast. For example, with three state variables, going from a first-degree to
 a second-degree polynomial involves going from a polynomial of four coefficients to one
 with ten coefficients, since all cross-products of the state variables belong to the second-
 degree polynomial. In practice, however, many of these second-degree terms do not need
 to be included; the reason is that many of them are nearly redundant and they do not
 add to the predictive power of the parameterized expectation.

 Clearly, if this happens, it just means that some of these terms can be excluded from
 the polynomial approximation with no loss of accuracy. More precisely, in going to a
 solution with a polynomial of degree v to a polynomial of degree v + 1, we would take
 the solution with degree v, make h(Q) consist of each element of order v + 1, and exclude
 from the larger polynomial those elements that passed the accuracy test. In this way we
 can save a lot of computing power and, in principle, the solution should not lose any
 accuracy, since the excluded terms do not contribute to the predictive power of the expecta-
 tion and they do not affect the simulation.

 3. ILLUSTRATING THE PROPERTIES OF THE ACCURACY TEST

 In this section we illustrate some of the properties of the accuracy test. For this purpose
 the simple growth model is solved with the method of parameterized expectations. We
 choose to work with a high standard deviation of the technology shock to make the
 problem more challenging. We will see that the results of the accuracy tests improve as

 5. A formal proof of this approximation result is available for the PEA. See Marcet and Marshall (1992).
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 DEN HAAN & MARCET ACCURACY IN SIMULATIONS 9

 TABLE 3.1

 Accuracy of the growth model (T= 3000)

 Lower 5% Upper 5%

 First-order polynomial 0-6% 29-6%
 Second-order polynomial 4-8% 6-4%
 Third-order polynomial 4 6% 5 6%

 the solution procedure becomes more precise. Moreover, it is possible to construct a
 solution in which the errors of the numerical solution are so small, that the results of the
 accuracy tests remain good, even when the sample size T is enormous.

 The representative agent solves

 max Eo 0 0 Ct
 {ct,kt} t = 1-T

 s.t. ct+kt= Otk_ 1+pkt-, (3.1)

 log ot = p log Ot+ I + t. (3.2)

 Here, -t is i.i.d., has a N(O, c2) distribution and k_, and 00 are given. A list of variables
 is given at the end of the Appendix. The parameter values used are r = 0 50, a = O 33, p =
 1.00, p=O095, c=0 10, S=095.

 Three solutions to this model are obtained by parameterizing the conditional expecta-

 tion in the Euler equation. The solutions differ in the order of the polynomial used for the
 parameterization. Details are given in the Appendix. The prediction error corresponding to
 the first-order condition of capital is given by

 ut = bct + (ak- 'Ot+I + p) -C T; (3.3)

 this equation will play the role of (2.2) in the accuracy tests. For all three solutions the
 growth model is simulated 500 times with 3000 observations. We use as instruments h(x,) =

 [1, kt, t -I, kt-2, 0t, tt- 0 Ot-2], so that the test statistic has a x2 distribution. In Table
 3.1 we report the percentage of draws that are in the lower and upper 5% tails.

 We see that the first-order parameterization is clearly inaccurate, since too many
 times the test statistic is higher than the critical 95% value and it is not lower than the
 critical 5% often enough. The results for the second- and third-order polynomial, however,
 are very close to the theoretical 5%. In Figure 3.1 the whole distribution of the test statistic
 is given. The conclusions that can be drawn from the graph are the same as the conclusions
 from the table. That is, only the first-order approximation is not close to the distribution
 of the true solution.

 The sensitivity of the accuracy test to the number of observations used in calculating
 the test statistic is investigated by increasing the number of observations for the solution
 of the third-order polynomial. Only a slight increase in the number of draws in the higher
 5% region is observed. No decline in the number of draws in the lower 5% could be
 detected. Even with enormous samples of 20,000 observations, which make for a very
 stringent test (see discussion in Section 2) we only get 9 8% in the upper 50/o and 4 6% in
 the lower 5% region.
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 Accuracy for the growth model

 4. USING THE ACCURACY TEST TO CHOOSE BETWEEN
 ALTERNATIVE SOLUTIONS

 4.1. Choosing Linear-Quadratic approximations in the simple growth model

 In Taylor and Uhlig (1990) it is shown that, even for the simple growth model with a low
 standard deviation, different solution techniques may display different characteristics of
 the model. It is thus certainly not the case that computation methods can in general be
 used interchangeably. Also, given a method, choices have to be made about the functional
 form, the grid, the convergence criterion, etc. The accuracy tests can be used as a device
 in making these choices.

 In this section we compare the results of the accuracy test for LQ and log LQ in the
 simple growth model. Christiano (1990) shows that except in states that occur with a low
 probability log LQ is more accurate than LQ. He obtains this conclusion by comparing
 the solutions to the solution obtained by value function iteration, which is very accurate
 (but also very expensive).

 Our test confirms the results in Christiano (1990) on the high degree of accuracy of
 the log LQ approximation, without the need of performing value function iterations. Note
 that the standard accuracy test automatically puts less weight on states that occur less
 often in the steady-state distribution.6 In addition we provide an economic explanation of
 why log LQ is a better approximation than LQ: both approximations impose restrictions
 on the means of the variables, but the restrictions imposed by the log LQ technique are
 shown to be more realistic. For a user of LQ approximations, our accuracy test would be
 useful in choosing between these two alternatives.

 6. If a researcher is interested in the accuracy of his solution for a specific range of the state variables, he
 can always condition on the state variables being in that specific set.
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 DEN HAAN & MARCET ACCURACY IN SIMULATIONS 11

 TABLE 4.1

 Accuracy of the solution techniques (T= 3000)

 ,r=0-5 r=3-0
 Lower 5% Upper 5% Lower 5% Upper 5%

 a=0-01
 LQ 0 4% 54 6% 5 2% 104%
 log LQ 4 0% 8-8% 4 6% 4*6%
 PE 4 4% 5 2% 4 8% 3*8%

 a=0-02
 LQ 0.0O/o 94 4% 2 8% 36'8%
 log LQ 2-2% 28-6% 4-6% 7-8%
 PE 3 8% 5 00/o 5 4% 4.4%

 a=0-03
 Lq 0.0Q% 99-8% 0 40/o 64 0%
 logLQ 0-6% 494% 2 2% 138%
 PE 5 4% 5 0% 4'8% 5 8%

 4.2. Accuracy comparisons between LQ and parameterized expectations

 Again we use the growth model discussed in the last section. The model is solved with the
 method of parameterized expectations and with the log LQ and the LQ solution method.
 We solve the growth model with r =0 50 and 3 00, a =0-33, p =0 975, p=0 95, C=0-01,

 0 02 and 0 03, &=0 99.
 Details about the solutions are again given in the Appendix. For the low-variance

 case, we cannot use all seven instruments from the last section to do the accuracy tests,

 since for some parameter values we obtain a nearly singular weighting matrix S,w. This
 only means that some elements from h( ) are redundant and they can be omitted from
 the test with no loss of power; therefore, we use the constant as the only instrument.7 In
 Table 4.1 the results of the accuracy tests are given. Again, the tests use 500 draws of
 3000 observations.

 In Table 4.1 we see that the accuracy test would tell us that the LQ approximation
 is clearly inaccurate for five out of the six parameter cases, while the log LQ approxima-
 tion is clearly more accurate, although its results are not satisfactory for all parameter
 values. For the PE solution, a second-order polynomial was chosen in order to pass
 the accuracy tests for the high standard deviation. One explanation provided in
 Christiano (1990) of why the log LQ solution method performs better than the LQ
 solution, is that for the special case of the model with complete depreciation and log
 utility, the rational expectations policy functions are exactly log LQ. We want to discuss
 another explanation; the policy functions for the LQ and log LQ approximation are
 given, respectively, by

 k,= a, +a2k,- 1 + a3 log (0,) (4.1)

 log (7,) = b, + b2 log (v, 1) + b3 log (0,), (4.2)

 where a2, a3, b2 and b3 are positive (again, we use bars to denote the approximated series).

 Values for a's and b's are given in the Appendix. If we take the unconditional expectation,

 7. Note that, since we use an exponential polynomial (see equation A.3 in the appendix) the derivative of
 the parameterized expectation with respect to the constant term is given by Ovy/fp, = Vy//fi, which is not equal
 to one. Therefore, even if h(-) is constant, it is not equal to the derivative of yr and the problems described at
 the end of Section 2 are avoided.
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 12 REVIEW OF ECONOMIC STUDIES

 TABLE 4.2

 The mean capital stock for different values of a

 r=0 5
 a=001 a=0-02 cr=003

 LQ 28 353 28-357 28-361
 (0-007) (0-013) (0.020)

 log LQ 28-371 28-432 28-529
 (0.007) (0-013) (0-020)

 PE 28-385 28-479 28-635
 (0.007) (0-013) (0.020)

 = 3-0
 a=0-01 a=0-02 u=0 03

 LQ 28-360 28-371 28-382
 (0.011) (0 022) (0 032)

 log LQ 28-411 28-577 28-848
 (0.011) (0.022) (0 033)

 PE 28-526 29-007 29-790
 (0.011) (0.022) (0.033)

 Note: The approximate standard errors are given in
 parentheses. The means are for a sample of 25,000
 observations.

 then we get for the LQ capital stock

 kt) a2 (4.3)
 1 -a2

 E(log kt) = _ (4.4)
 1-b2(4)

 where the expectation is taken with respect to the steady-state distribution.
 In the simple growth model, there are two reasons why, in the true solution, the mean

 of the capital stock becomes higher with an increase in uncertainty. First, if a 2 goes up,
 the mean of Ot goes up, so that average productivity increases; second, since the representa-
 tive agent uses capital as an asset for insuring against periods of low productivity, if the
 uncertainty increases he needs more insurance and a higher capital average. On the other
 hand, the log LQ solution forces the mean of capital to go up: since the exponential
 function is convex, an increase in the variance of log kt will cause the mean of kt to go
 up. The point we want to drive home is that the log LQ solution, by construction, causes
 the mean of the capital stock to increase, which in this model happens to be the right
 direction in which the mean of capital should move. This suggests that in a model where
 the true solution had a lower mean of the state variable when uncertainty increased, plain
 LQ may be better than log LQ.

 Tables 4.2 and 4.3 illustrate the (in)dependence between the mean capital value and
 the standard deviation for the three solution techniques. Although the mean of the log LQ
 capital stock rises with a, it does not rise as much as the PE capital stock. First, consider
 the case where r = 3-0. If we increase a from 0-01 to 0-02, for instance, then we find an
 increase in the log LQ capital stock of 0 58% and an increase in the PE capital stock of
 1 70%. This is consistent with Christiano (1990) who also finds that the log LQ average
 capital stock is between the average capital stock of the LQ and the value function iteration
 solution.
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 TABLE 4.3

 The increase in capital for r going from 0 5 to 3 0

 a=001 a=0-02 a=003

 LQ 0025% 0 049% 0 074%
 logLQ 0-141% 0 510% 1-180%
 PE 0 497% 1-854% 4 034%

 4.3. The accuracy test in the cash-in-advance model of Cooley and Hansen

 In this sub-section we use a monetary equilibrium model to study the properties of
 the accuracy test. In Cooley and Hansen (1989) a cash-in-advance model is solved by
 forming a LQ approximation. The standard LQ solution procedure, however, cannot
 be applied, since in a cash-in-advance economy the competitive equilibrium is not the
 solution to a planner's problem. Therefore, in addition to taking a LQ approximation
 of the utility function, the authors have to assume that the perceived law of motion
 for prices (scaled by the money supply) is linear in the state variables. This extension
 of the LQ solution technique is new to the literature and its accuracy has never been
 discussed. We tested the LQ solutions for accuracy and made comparisons with the
 solutions obtained with the method of parameterizing expectations (PE). More details
 are given in the Appendix, and in the working paper version of this article. Here we
 give a summary of the results.

 The model has two stochastic Euler equations. One for capital and one for real money
 balances. We looked at two sets of parameters. The first one has a moderate money growth
 of 1 5% per quarter and the second has a high money growth of 15% per quarter.

 With the PE numerical solution we can duplicate all the statistics that are reported
 in the tables in Cooley and Hansen (1989). Using the LQ solution we find that the results

 of the accuracy test for the money equation are dramatically bad for both parameter sets.
 The results for the residual of the Euler equation for capital are good for the low growth
 case but bad for the high growth case. The PE numerical solution, however, does pass
 the accuracy tests. The different results in the accuracy tests suggest that there are differ-
 ences between the series generated by both methods, even though these do not affect the
 statistics reported by Cooley and Hansen and, therefore, the conclusions in that paper.

 The main differences are as follows: (i) it is possible to show analytically that, in the
 true rational expectations equilibrium, the costs due to the cash-in-advance constraint (as
 a fraction of the marginal utility of consumption) are a fixed function of only the current
 money growth rate, so that the correlation between these two variables should be very
 close to one; with the LQ solution, however, we find a value of 0939; (ii) the behaviour
 in the tails is different; (iii) the LQ value for the mean of capital stock is low: for the high
 money growth case it is 1 6% lower than the value obtained with PE, confirming our
 intuition in the previous sub-section of why the log LQ solution behaves differently.

 This example illustrates that the accuracy test is very powerful, in the sense that it
 detects small inaccuracies. That is, the results of the accuracy test may reject the LQ
 solution, although only some characteristics of the LQ solution showed substantial differ-
 ences with the (accurate) PE solution.

 5. CONCLUDING REMARKS

 Since the actual solution to rational expectations models is usually not known, it is useful
 to have criteria for judging the accuracy of the numerical solution. The test introduced in
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 14 REVIEW OF ECONOMIC STUDIES

 this paper can be used to detect inaccurate solutions with low computing costs. The test

 can be used for guidance in any algorithm where one has to make choices about the
 functional form, the grid or the convergence criterion, and in sorting between alternative
 solutions. Furthermore, the test can be used to eliminate irrelevant terms from a high-
 order polynomial in the method of parameterized expectations, thereby reducing the com-
 putational costs of refining the solution.

 Perhaps the most important message of this paper is that tests can be designed to

 check for accuracy in a way that is inexpensive, powerful and constructive.

 APPENDIX: SOLUTIONS OF THE MODELS

 In this Appendix we give more detailed information about the solutions to the used models. For details on the

 method of parameterized expectations we refer the reader to Marcet (1988) and den Haan and Marcet (1990).
 In Christiano (1990) a description of the LQ-approximation is presented.

 TABLE A. 1

 fif for the growth model of Section 3

 n= 1 n=2 n=3

 constant 2-0359 1-8106 1-8151
 In (k,,1) -0-4063 -0 3212 -0 3252
 In (0,) -0 1157 -0 2243 -0-2747

 In (k,- )2 -0-0152 -0-0130
 In (k,,1) in (0,) 0-0388 0-0725
 in (0,)2 -0-0294 -0-0846
 in (k, 1)3 -0?0004
 In (k,_1)2 In (0,) 0 0055
 In (k,,1) In (0,)2 0-0193
 In (0,)3 -0-0117

 The simple growth model

 The first-order conditions for the simple growth model are (3.2) and

 c, t=3E,c,+8c(ak+' +). (A.l)

 Let Pn(k, 0) stand for the nth-order linear polynomial. The conditional expectation in Equation (A. 1) is param-

 eterized with exp (Pn(log (k), log (0))), where n = 1, 2, 3. If n = 1, we get

 ct- r ==lexp(f2 log (k,_ ) + 03 log (0,)). (A.2)

 The fixed point for the vector P is calculated using 29,000 observations. The solutions for the three
 polynomials are given in Table A. 1. For the growth model of Section 4, the fixed-point parameters are given in
 Table A.2.

 The LQ policy functions for r = 3 0 and 0 5 are respectively given by

 k, = 0 57631 + 0 97967 k,t + 21 7301 log (0,) (A.3)

 k, = 1 55914 + 0 94500 k,t + 2 5491 1 log (0,). (A.3')

 For the log LQ approximation we get, respectively,

 log (k,) =0-06799+0-97967 log (k, ) +0-07665 log (0,) (A.4)

 log (k,) = 0 18395 + 0 94500 log (k, ,) + 0-08992 log (0,). (A.4')
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 TABLE A.2

 fif for the growth model of Section 4

 r =0.5
 a=0-01 a=0-02 a=0-03

 constant 1-5953 1-8885 1-9982
 In (k,_,) -0 1229 -0-2238 -0-2575
 In (0,) -0-2089 -0-2066 -0-2054
 In (k,t1)2 -0-0415 -0-0264 -0-0213
 In (k,_1) In (0,) 0-0323 0-0316 0-0312
 In (0,)2 -0-0353 -0-0294 -0-0274

 a=0 01 a=0-02 a=0 03

 constant 0-6250 1-5387 2-1976

 In (k,t1) -0 0790 -0-6162 -0-8264
 In (0,) -0-8616 -1-4209 -1-6521
 In (k,t1)2 -0- 1573 -0-0767 -0 0450
 ln (k,t1) ln (0,) -0-0692 0 0991 0-1694
 ln (0,)2 -0-2080 -0-1289 -0-1026

 The Cooley-Hansen model

 Let iL, and i7, be the Lagrange multipliers of respectively the budget equation and the cash-in-advance
 constraint. The first-order conditions for the Cooley-Hansen model can be written as follows:

 i,t = Et,6;Lt + I (Ot. + 1 aka h- -1 ,+l + ,p1), (A.5)

 ALt Ea t+l + 17t+l A6 Et3 (A.6)
 Pt Pt

 I =A +i1, (A.7)
 c,

 B= -,(1-a)0,kOk Ih-', (A.8)

 ct + kt + Mt Mt1 = Otkal,1h, - a +pkt,-1 + (g- 1) M-, (A.9)
 Pt Pt

 p,c, = m,. (A.10)

 If we multiply Equation (A.6) with M,, impose the equilibrium condition and use Equation (A. 10), then we get

 Mtc =E IE- E- (A. I l )
 M,+1 gt+l

 If we eliminate iL, using Equation (A.7), then we get

 1-,c,=SE,Li 1

 Since E,(1l/g,+) is a known function of gt, we get the result mentioned in Section 4.2 that i7, as a fraction of
 marginal utility is a function of only g,. This is a property that was strongly violated by the LQ solution. The
 conditional expectation in equation (A. 11) can be calculated analytically, since g, has a log-normal distribution.
 Thus we only have to parameterize the conditional expectation in equation (A.5). Let h(k, 1, 0,, g,; P) be the
 parameterization for the conditional expectation, where ,B is the vector of parameters. Equation (A. 1) is thus
 replaced by

 ;L,=h(k,- I, 0,, g,; P) (A. 12)

 Given initial values for the parameter of h(), it is again easy to solve the model. Equation (A. 12) directly
 solves for iL,. Equation (A. 1) can be used to solve for consumption and Equation (A.8) to solve for the labour
 supply. The budget equation solves for the capital stock. The cash-in-advance constraint together with the law
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 TABLE A.3

 Bf for the Cooley-Hansen model

 g= 1 015 g=1 15

 constant 3 0275 2-9511
 ln (k, 1) -0-2293 -0-2451
 ln (0,) -1 3177 -1-2734
 In (g,) -0-0324 -0-0324
 In (k, 1)2 -0-0631 -0-0631
 In (k, 1) In (0,) 0 3553 0 3553
 In (0,)2 -0-1833 -0- 1833
 ln (0,)3 -1-3690 -1-3690

 of motion for money gives the price level. Again we let h(-) be the exponential of a linear polynomial in the
 logs. The fixed point for the parameters of h(-) are calculated using 40,000 observations. The parameter values

 at the fixed point are reported in Table A.3.

 List of Variables

 c, = consumption

 k, = end-of-period capital stock

 0, = productivity
 h,= labour supply

 m,=end-of-period nominal money holdings
 p, = price level

 M,= nominal money supply
 g, = Ml /M,_ I

 71= Lagrange multiplier of the cash-in-advance constraint
 i,= Lagrange multiplier of the budget constraint
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