

ECON 7920
 Econometrics II
 Philip Shaw
 Problem Set 3
 Due Date: March 2, 2023

Problem 1

Consider the population model that relates a student's term GPA (*termgpa*) to prior to term GPA (*priGPA*) and a student's ACT score (*ACT*). Assume the functional form for the conditional mean function is given by: $m(x, \theta_0) = \theta_{01} + \theta_{02}priGPA + \theta_{03}ACT$.¹

- a. Modify the *qfunction.R* file to reflect the population model presented above. Be sure to save the file and then source the file accordingly.
- b. Using the functional form above, calculate the analytical expression for the Hessian matrix for each i and each p . Recall that the Hessian matrix should take the following form:

$$H_i = \begin{bmatrix} h_{i,11} & h_{i,12} & h_{i,13} \\ h_{i,21} & h_{i,22} & h_{i,23} \\ h_{i,31} & h_{i,32} & h_{i,33} \end{bmatrix} \quad (1)$$

where $h_{i,11}$ is the derivative of $\frac{\partial q_i}{\partial \theta_{01}}$ with respect to θ_{01} , $h_{i,12}$ is the derivative of $\frac{\partial q_i}{\partial \theta_{02}}$ with respect to θ_{02} , and $h_{i,13}$ is the derivative of $\frac{\partial q_i}{\partial \theta_{03}}$ with respect to θ_{03} .

- c. Given your Hessian matrix above, compute the sum of the Hessian:

$$\sum_{i=1}^N H_i = \begin{bmatrix} \sum_{i=1}^N h_{i,11} & \sum_{i=1}^N h_{i,12} & \sum_{i=1}^N h_{i,13} \\ \sum_{i=1}^N h_{i,21} & \sum_{i=1}^N h_{i,22} & \sum_{i=1}^N h_{i,23} \\ \sum_{i=1}^N h_{i,31} & \sum_{i=1}^N h_{i,32} & \sum_{i=1}^N h_{i,33} \end{bmatrix} \quad (2)$$

¹For this problem you will need the script files *qfunction.R*, *qderivfun.R*, and *qderivfun2.R*.

- d. Now compute the analytical expression for A_0 .
- e. Using the *nls* command in R and the dataset *attend.csv*, estimate the population model under consideration.²
- f. Given your estimates above, verify that the code *qderivfun2.R* produces the exact values for both $\sum_{i=1}^N \ddot{H}_i$ and \hat{A}_0 .
- g. Using your estimates above and the *qderivfun.R* script, calculate the estimated variance-covariance matrix $\hat{A}var(\hat{\theta})$.
- h. Test the null hypothesis $H_0 : \theta_{0j} = 0$ versus $H_1 : \theta_{0j} \neq 0$ for $j = 1, 2, 3$.

² `nlsout=nls(termgpa~(b0 + b1*priGPA+b2*ACT), start = list(b0 = 1, b1 = 0.04321,b2=.9))`